$B0J2<$N!V(BPainlevé$B$*$h$S(BToda$BJ}Dx<0$N2r$N(BHankel determinant formula
$B$HJd=u@~7ALdBj!W$N(B full paper $BHG$G!$(Bdeterminant formula $B$N(BKP$BM}O@$K$h$kFCD'IU$1$K4X$9$k7k2L$,2CI.$5$l$F$$$^$9!%(B
KP$BM}O@$rMQ$$$?8x<0$O!$$-$l$$$K$^$H$^$C$?<0$G$9$,!$$+$J$jIT;W5D$J<0$G$9!%$b$7$+$7$?$i(BToda$B3,AX$=$N$b$N$r(B
$BI=8=$9$k<0$J$N$+$bCN$l$J$$$G$9!%$3$&$J$k$H2r$HJ}Dx<0$,^UA30lBN$H$J$C$?@$3&$,!D!%$"$l$@$14JC1$J(B
Toda $BJ,;R$N2r$N(B determinant formula$B$NGX8e$K$3$&$$$&$b$N$,95$($F$$$k$H$O!%(B
$B$H$j$"$($:4JC1$KFI$a$kO@J8$@$H;W$$$^$9$N$G!$@'Hs$4Mw$/$@$5$$!%(B
Point configurations, Cremona transformations and the elliptic difference Painlevé equation
Generating function associated with the Hankel determinant
formula for the solutions of the Painlevé IV equation
$BCx
to appear in Funkcial. Ekvac.(2006), preprint
arXiv:nlin.SI/0512041
($B8m$j$J$I$r=$@5$7$??7$7$$%P!<%8%g%s$K$J$C$F$$$^$9(B)
Astérisque $B$NO@J8$NB3JT!%F1MM$N7W;;$r%Q%s%k%t%'(B IV $BJ}(B
$BDx<0$K$D$$$F$d$C$F$_$^$7$?!%7W;;$N>\:Y$O%Q%s%k%t%'(B IV $BFCM-$N(B
$B;v>p$K0MB8$9$k$K$b$+$+$o$i$:!$7k2L$O5$;}$A0-$$$/$i$$8+;v$K(B $B%Q%s%k(B
$B%t%'(B II $B$N>l9g$H0lCW$7$^$9!%=>$C$F!$$3$3$G4Q;!$5$l$k;vo$K9-$$HO0O$N2D@QJ,7O$K8+$i$l$k$G$7$g$&!%(B
Painlevé$B$*$h$S(BToda$BJ}Dx<0$N2r$N(BHankel determinant formula
$B$HJd=u@~7ALdBj(B
Rational Solutions for the Discrete Painlevé II Equation
$BCx
Discrete Painlevé II $BJ}Dx<0$NM-M}2r$rD>@\K!$rMQ$$$F9=@.$7$?!#(B $B2r$O(BLaguerre$BB?9`<0$rMWAG$H(B
$B$9$k9TNs<0$GI=<($5$l$k!#$^$?!"$3$N7k2L$OO"B36K8B$G(B Painlevé II $BJ}Dx<0$NM-M}2r$N(BDevisme$BB?9`<0I=8=$K5"Ce$9$k$3$H$r<($7$?!#(B
Phys. Lett. {\bf A232}(1997), 189.
Two-dimensional Soliton Cellular Automaton of Deautonomized
Toda-type
A. Nagai, T. Tokihiro, J. Satsuma, R. Willox and K. Kajiwara
2$B
Phys. Lett. {\bf A234}(1997), 301.
Bilinearization of Discrete Soliton Equations and Singularity
Confinement