$B%]%9%?!<%;%C%7%g%s!!%W%m%0%i%`(B
2010$BG/(B2$B7n(B23$BF|!J2P!K(B 17:00$B!<(B18:00
$B:G=*99?7F|(B: 2010/02/05 12:13
$B%A%e!<%H%j%"%k$N%Z!<%8$KLa$k(B
$B"(!!0J2
-
- $B9V1i $B1|B<7I:Q(B($BN6C+BgM}9)!&(BB4)
- $B%?%$%H%k!'(B$BBJ1_(BElGamal$B0E9f$rMQ$$$?J8;zNs$N0E9f2=(B
- $B35MW!'(B
$BBJ1_6J@~N%;6BP?tLdBj$K0BA4@-$N:,5r$rCV$/BJ1_6J@~0E9f!$(B
$B$=$NCf$G$b!$BJ1_6J@~>e$G(BElGamal$B0E9f$r
-
- $B9V1i $B@DLZ(B $B0l>-(B($BN6C+BgM}9)!&(BB4)
- $B%?%$%H%k!'(B$B%@%$%d%b%s%I7k>=$H(B K4 $B7k>=$N9=B$(B
- $B35MW!'(B $B%@%$%d%b%s%I$NG[Ns$NH~$7$5$K$D$$$F9M$($k!%%@%$%d%b%s%I$N7k>=$N9=B$$r!$(B
$B<~4|@-!$BP>N@-!$:G>.86M}$+$iJ,@O$9$k!%$=$NCf$G$bFC$K:G>.86M}$ND4OBE*=$r(BMathematica$B$rMQ$$!$%7%_%e%l!<%7%g%s$9$k!%(B
-
- $B9V1i $B>.ED(B $BIR;J(B($BN6C+BgM}9)!&(BB4)
- $B%?%$%H%k!'(B[email protected]$K@E;_$7$?J*BN$N$^$o$j$H1sJ}$G$NN.B.$NJQ2=$N?tCM2r@O(B
- $B35MW!'(B
[email protected]$K@E;_$7$F$$$kJ*BN$NA08e$HJ*BN$^$o$j$G$NN.B.$NJQ2=$K$D$$$F(BMathematica$B$rMQ$$$F?tCME*$K2r@O$7!$(B
$B%l%$%N%k%:?t$NA}2C$K$h$C$F!$B.EY8{G[$,$I$N$h$&$KJQ2=$9$k$N$+$N8&5f!%(B
-
- $B9V1i $BF#(B $B7rB@(B($B?@8MBgM}!&(BPD)
- $B%?%$%H%k!'(BA2$B%R%(%i%k%-!<$NB`2=9=B$(B
- $B35MW!'(B
A2$B7?$N%I%j%s%U%'%k%H!&%=%3%m%U3,AX$NAj;w4JLs$K$h$C$F%Q%s%k%t%'J}Dx<0$N%i%C%/%97A<0$rF@$k$3$H$,=PMh$k!%(B
$B$3$N%i%C%/%97A<0$KBP$7$F%Q%s%k%t%'J}Dx<0$NB`2=$r;}$A>e$2$k$3$H$,=PMh$k!%(B
$B$3$NB`2=$KBP$7$FAj;w4JLs$H$$$&>r7o$r$O$:$9$3$H$G(BA2$B7?$N%I%j%s%U%'%k%H!&%=%3%m%U3,AX$NB`2=9=B$$,F@$i$l$k!%(B
-
- $B9V1i $BK\ED(B $B=_;K(B($B6eBg?tM}!&(BM2)
- $B%?%$%H%k!'(B$BAP6J6u4V$N4V$NEyD9$O$a9~$_$H8~$-IU$1$i$l$?B,CO@~A4BN$N6u4V(B
- $B35MW!'(B
$BF1$86JN($r;}$DC1O"7k6u4V7?$N4V$NEyD9$O$a9~$_$NJ,N`$O!$(B
$B$=$N6JN($,Ii$N>l9gL$$@$K2rL@$5$l$F$$$J$$ItJ,$,B?$$!%(B
$B$3$N%]%9%?!<$G$O$=$N$h$&$JEyD9$O$a9~$_$HB,CO@~$N6u4V$NNmE*6J@~$H$N4X78$K$D$$$F8@5Z$7J,N`LdBj$X$N%"%W%m!<%A$r9M$($k!%(B
-
- $B9V1i $B>>2H(B $B7I2p(B($BElBg?tM}!&(BM2)
- $B%?%$%H%k!'(B$BN%;62=$7$?H>@~7AG.J}Dx<0$N;~4VBg0h2r$NB8:_$K$D$$$F(B
- $B35MW!'(B $BH>@~7AG.J}Dx<0$K$OM-8B;~9o$GGzH/$9$k2r$d;~4VBg0hE*$KB8:_$9$k2r$,$"$k!%(B
$B$"$kH>@~7AG.J}Dx<0$K$*$$$FF#ED;X?t$H8F$P$l$k;~4VBg0h2r$NB8:_$r:81&$9$kNL$,CN$i$l$F$$$k!%(B
$BK\8&5f$G$OF#ED;X?t$r4^$a$?;~4VBg0h2r$NB8:_$K4X$9$k@-@~7AG.J}Dx<0$rN%;62=$r9T$C$?!%(B
-
- $B9V1i $BCS>e(B $B5.=S(B($BAaBg4p44M}9)!&(BM2)
- $B%?%$%H%k!'(B$BD6N%;68MEDJ}Dx<0$N$"$k3HD%$K$D$$$F(B
- $B35MW!'(B $B@5$N%=%j%H%s2r$r;}$D$3$H$,CN$i$l$F$$$kD6N%;68MEDJ}Dx<0$H!$(B
$B$=$l$HEy2A$JIi$N%=%j%H%s2r$r;}$DJ}Dx<0$rAH$_9g$o$;$F?7$7$$D6N%;6J}Dx<0$rDs0F$7!$2r$N%=%j%H%sE*5sF0$K$D$$$F2r@O$r$*$3$J$C$?!%(B
-
-
- $B9V1i $BA0ED(B $B0l5.(B($B5~Bg>pJs!&(BM1)
- $B%?%$%H%k!'(B$BHs<+NeD6N%;68MEDJ}Dx<0$HBP1~$9$kH"6L7O$K$D$$$F(B
- $B35MW!'(B $BH"6L7O$HM-8B3J;R>e$ND6N%;68MEDJ}Dx<0$H$NBP1~4X78$,CN$i$l$F(B
$B$$$k!%$3$l$KBP$7!$Hs<+Ne$ND6N%;68MEDJ}Dx<0$r9M$(!$BP1~$9$kH"6L7O$K$D$$$FD4$Y$?!%(B
$BF@$i$l$?H"6L7O$OD9$5@)8B$N$"$kH"6L7O$H$G$b8F$V$Y$-$b$N$G$"$k!%(B
$B$^$?!$$3$N7O$H4{CN$NB.EY@)8B(B ($B1?HB
-
- $B9V1i $BNkLZ(B $BC#IW(B($B
- $B%?%$%H%k!'(BQuasideterminant$B$rMQ$$$?Hs2D49%9%Z%/%H%kJ,2r(B
- $B35MW!'(B I. Gelfand and V. Retakh$B$K$h$C$FDj5A$5$l$?(Bquasideterminant$B$N(B
$B35G0$rMxMQ$7$F!$@~7ABe?t$K$*$1$k%9%Z%/%H%kJ,2rM}O@$NHs2D49HG$r:n@.$7$?!%(B
[email protected],$,Hs2D49$J9TNs$KBP$7$F$b!$9TNs$N4X?t$r7h$^$C$?
-
- $B9V1i $BCfED(B $BMG0l(B($BElBg?tM}!&(BD3)
- $B%?%$%H%k!'(B$BD6N%;6%=%j%H%sJ}Dx<0$K$*$1$kD:E@:nMQAG$HGX7J2r(B
- $B35MW!'(B $BD6N%;6%=%j%H%sJ}Dx<0$K$*$$$F!"D:E@:nMQAG$ND6N%;6N`;wJ*$KAjEv$9$k:nMQAG$rDs=P$7$?!%(B
$B$^$?D:E@:nMQAG$rMQ$$$F=>Mh$N%=%j%H%s2r$NOH$+$i30$l$?2r$,L@<(E*$K5-=R=PMh$k$3$H$r<($9!%(B
-
- $B9V1i $B;0LZ7<;J(B($B5~Bg>pJs!&(BM2)
- $B%?%$%H%k!'(B$BN%;6(BPfaff$B3J;R(B
- $B35MW!'(B
$BD>8r4X?t7O$H2D@QJ,7O$N4X$o$j$O?<$/!$FC$KD>8rB?9`<0$H8MED3J;R$N4X78$,$h$/CN$i$l$F$$$k!%(B
$B$3$3$G$OODD>8rB?9`<0$H8F$P$l$k%i%s%@%`9TNs$G$NM}O@$GF3F~$5$l$?D>8r4X?t7O$+$iN%;62D@QJ,7O$rF3=P$9$k$3$H$r;n$_$k!%(B
-
- $B9V1i $B;0B<(B $B>0G7(B($B@D3XBgM}9)!&(BD1)
- $B%?%$%H%k!'(B$BD6N%;6FC0[E@JD$89~$a%F%9%H$HJ}Dx<0$N2D@QJ,@-$K$D$$$F(B
- $B35MW!'(B $B:G6a!$2f!9$OD6N%;6J}Dx<0$N2D@QJ,@-H=DjK!$H$7$FD6N%;6FC0[E@JD$89~$a%F%9%H$rDs0F$7$?!%(B
$BK\H/I=$G$O!$$3$N%F%9%H$rMM!9$JJ}Dx<0$KE,MQ$7$?7k2L$r>R2p$9$k!%(B
-
- $B9V1i Matsumoto Diogo Kendy($BAaBg4p44M}9)!&(BM2)
- $B%?%$%H%k!'(BA new construction of involutive Dynamical Yang-Baxter maps
- $B35MW!'(B As well as the Yang-Baxter equation,
we can consider the set theoretical solutions of the dynamical Yang-Baxter equation(DYB map).
These DYB maps were proposed by Youichi Shibukawa(Hokkaido Univ.).
In this poster,we introduce new construction of involutive dynamical Yang-Baxter maps.
-
- $B9V1i$BFqGH(B $B42(B($BN)65BgM}!&(BM1)
- $B%?%$%H%k!'(Bmax-plus$B:F5"J}Dx<0$N5UD6N%;62=(B
- $B35MW!'(B $B%/%L!<%9$N#5<~4|:F5"J}Dx<0$O!$D6N%;62=$5$l$F$b<~4|@-$rJ]$A!$$+$D50F;$,B?3Q7A>e$K$"$k!%(B
$B$3$3$G$O!$B?3Q7A$r@h$KM?$(!$$=$N>e$rF0$/:F5"(Bmax-plus$BJ}Dx<0$r:n$j!$(B
$B5UD6N%;62=$7$F$b<~4|@-$OJ]$?$l$k$N$+$rD4$Y$F$$$/!%(B
-
- $B9V1i$BBg@n(B $B9k(B($BN)65BgM}!&(BB4)
- $B%?%$%H%k!'(B$B@5B?LLBN72$NBP>N@-$r;}$DJ#AGNO3X7O(B
- $B35MW!'(B $BJ#AGM-M}N@-$r;}$D>l9g$K$D$$$F!$$=$N(BJulia$B=89g$r9M;!$9$k!%(B
-
- $B9V1i$B;0_7(B $B>49((B($BN)65BgM}!&(BB4)
- $B%?%$%H%k!'(B$BD64v2?4X?t$N2r@O@\B3(B
- $B35MW!'(B $BD64v2?4X?t$N2r@O@\B3$K$D$$$FO@$8$k!%(B
$BD64v2?4X?t$r!$5i?tI=<(!$@QJ,I=<(!$HyJ,J}Dx<0$NN)>l$+$iD/$a!$(B
$BHyJ,J}Dx<0$N6I=j2r$N@QJ,I=<($r
-
- $B9V1i$B5\@n(B $BJ89a(B($BN)65BgM}!&(BB4)
- $B%?%$%H%k!'(B$BKbJ}?X$N?t$(>e$2(B
- $B35MW!'(B $B<+A3?t$r(Bn$B9T(Bn$BNs$KJB$Y$k$H$-!$3F9T3FNs$NOB$,A4$FEy$7$$>l9g$r!VKbJ}?X!W$H8F$V!%(B
$BOB$r(Br$B$H$7$F!$?t;z$N=EJ#$r5v$9>l9g$NKbJ}?X$NAm?t$O(Br$B$NB?9`<0$H$J$k!%(B
$B$3$N$3$H$N!$(BBona $B$K$h$k4JN,2=$5$l$?>ZL@$r>R2p$9$k!%(B
-
- $B9V1i$B;3K\(B $B@;<$(B($BN)65BgM}!&(BB4)
- $B%?%$%H%k!'(BGauss$B$ND64v2?HyJ,J}Dx<0$H%b%N%I%m%_!<(B
- $B35MW!'(B Gauss$B$ND64v2?HyJ,J}Dx<0$O#z!a#0!$#1!$!g$KFC0[E@$r;}$A!$(B
$B3FFC0[E@$N6a$/$K$*$1$k6I=j2r$r9=@.$9$k$3$H$,=PMh$k!%(B
$B$^$?!$(BEuler$B$N@QJ,I=<($r$9$k$3$H$,=PMh$F!$(B
$B$=$N@QJ,I=<($+$i@\B378?t$H%b%N%I%m%_!<72$r5a$a$k$3$H$,=PMh$k!%(B
$B$^$?!$C1FH9b3,@~7A>oHyJ,J}Dx<0$NFC0[E@$NJ,N`$H3NDjFC0[E@$K$*[email protected]!!$(B
$B$5$i$K(BFuchs$B7?@~7AHyJ,J}Dx<0$K$*$1$kFC0[E@5Z$S$=$NFC@-;X?t$HJ}Dx<0$K4^$^$l$kDj?t$H$N4X78$J$I$r3X$s$@!%(B
$B$5$i$KFC0[E@$HFC@-;X?t$+$iJ}Dx<0$,0l0UE*$K7h$^$k:G$b4JC1$J(BRiemann$B$NHyJ,J}Dx<0$,(B
Gauss $B$ND64v2?HyJ,J}Dx<0$HK\/$7$G$b>R2p$9$k$3$H$,=PMh$?$i9,$$$G$9!%(B
-
- $B9V1i$BM';^(B $BL@J](B($BL@<#Bg3X@hC@.3hM5(B($BElBg@hC<8&(B)
- $B%?%$%H%k!'(B$B?M$NJb9T%@%$%J%_%/%9$K$*$1$kH/?JGH(B
- $B35MW!'(B $B?M$NJb9T%@%$%J%_%/%9$K$*$1$k2;B.$HL)EY$N4X78$rD4$Y$k$?$a!$(B
$B0lZ$r9T$C$?$N$GJs9p$9$k!%(B
-
-
- $B9V1i$Bop8M7pJs!&(BD1)
- $B%?%$%H%k!'(B$B;vA0>pJsIU$-@~7A2s5"%b%G%k$N(BD-optimal design[email protected]!(B
- $B35MW!'(B $BE}7WE*pJsIU$-$N@~7A2s5"%b%G%k$r9M$(!$$=$N(BD-optimal design$B$r!$N%;62D@QJ,7O$NJ}Dx<0$rMQ$$$k$3$H$K$h$C$F9=@.$9$kJ}K!$K$D$$$F>R2p$9$k!%(B
-
- $B9V1i$BCf1`?.9'(B($B6eBg?tM}!&(BM2)
- $B%?%$%H%k!'(BHypergeometric τ-functions of the q-Painlevé IV equation of
type A4(1)
- $B35MW!'(B A4(1)$B7?%"%U%#%s%o%$%k72$+$iF@$i$l$k(Bq-Painlevé IV $BJ}Dx<0$ND64v2?(Bτ$B4X?t$r9=@.$7$?$N$G!$$=$N7k2L$rJs9p$9$k!%(B
$B%A%e!<%H%j%"%k$N%Z!<%8$KLa$k(B